Connect with us

Hi, what are you looking for?

Computing

Photonic neuromorphic architecture for tens-of-task lifelong learning

Photonic neuromorphic architecture for tens-of-task lifelong learning


  • Geiger, A. et al. Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32, 1231–1237 (2013).


    Google Scholar
     

  • Wang, X. Y. et al. Panda: a gigapixel-level human-centric video dataset. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 3265–3275, (2020).

  • Cordts, M. et al. The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 3213-3223, (2016).

  • Chang, X., Bian, L. & Zhang, J. Large-scale phase retrieval. eLight 1, 1–12 (2021).


    Google Scholar
     

  • Sarker, I. H. Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2, 160 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

    PubMed 

    Google Scholar
     

  • Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    ADS 

    Google Scholar
     

  • Weng, T. W. et al. Evaluating the robustness of neural networks: An extreme value theory approach. 6th International Conference on Learning Representations. Vancouver, BC, Canada: OpenReview.net, (2018).

  • Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y. et al. S3-Net: a fast scene understanding network by single-shot segmentation for autonomous driving. ACM Trans. Intell. Syst. Technol. 12, 58 (2021).


    Google Scholar
     

  • Zhen, P. et al. Fast video facial expression recognition by a deeply tensor-compressed LSTM neural network for mobile devices. ACM Trans. Internet Things 2, 4 (2021).


    Google Scholar
     

  • Cheng, Y. et al. DEEPEYE: A deeply tensor-compressed neural network for video comprehension on terminal devices. ACM Trans. Embedded Comput. Syst. 19, 18 (2020).


    Google Scholar
     

  • Yuan, X. Y. et al. A modular hierarchical array camera. Light Sci. Appl. 10, 37 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. et al. An anomaly comprehension neural network for surveillance videos on terminal devices. 2020 Design, Automation & Test in Europe Conference & Exhibition. Grenoble, France: IEEE, 1396–1401, (2020).

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 8, 42 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Yuan, X. Y. et al. Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning. Nat. Commun. 14, 1 (2023).

    ADS 

    Google Scholar
     

  • Zhu, T. F. et al. Plasmonic computing of spatial differentiation. Nat. Commun. 8, 15391 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. K. et al. Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 9, 23 (2023).

    CAS 

    Google Scholar
     

  • Xu, Z. H. et al. A multichannel optical computing architecture for advanced machine vision. Light Sci. Appl. 11, 255 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. X. et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 7, eabd7690 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network. Light. Adv. Manuf. 4, 19 (2023).


    Google Scholar
     

  • Zhu, Y. et al. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light. Adv. Manuf. 4, 9 (2023).


    Google Scholar
     

  • Luo, Y. et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight 2, 4 (2022).


    Google Scholar
     

  • Lin, H. & Cheng, J.-X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3, 6 (2023).


    Google Scholar
     

  • Pan, J. T. et al. Shallow and deep convolutional networks for saliency prediction. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 598–606, (2016).

  • Feldmann, J. et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, T. et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural network. Optica 7, 1812–1819 (2020).

    ADS 

    Google Scholar
     

  • Chang, J. L. & Wetzstein, G. Deep optics for monocular depth estimation and 3D object detection. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE, 10192–10201, (2019).

  • Metzler, C. A. et al. Deep optics for single-shot high-dynamic-range imaging. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 1372–1382, (2020).

  • Situ, G. H. Deep holography. Light. Adv. Manuf. 3, 8 (2022).


    Google Scholar
     

  • Chang, J. L. et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).


    Google Scholar
     

  • Ratcliff, R. Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. Psycholog. Rev. 97, 285–308 (1990).

    CAS 

    Google Scholar
     

  • McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psycholog. Rev. 102, 419–457 (1995).


    Google Scholar
     

  • Parisi, G. I. et al. Continual lifelong learning with neural networks: A review. Neural Netw. 113, 54–71 (2019).

    PubMed 

    Google Scholar
     

  • Hong, X. B. et al. Lifelong machine learning: outlook and direction. Proceedings of the 2nd International Conference on Big Data Research. Weihai China: ACM, 76–79, (2018).

  • Valdés-Sosa, P. A. et al. Estimating brain functional connectivity with sparse multivariate autoregression. Philos. Trans. R. Soc. B: Biol. Sci. 360, 969–981 (2005).


    Google Scholar
     

  • Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

    PubMed 

    Google Scholar
     

  • Ng, B. et al. A novel sparse graphical approach for multimodal brain connectivity inference. 15th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nice, France: Springer, 707–714, (2012).

  • Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture for solving constraint satisfaction problems. Nat. Commun. 6, 8941 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amir, A. et al. A low power, fully event-based gesture recognition system. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 7388–7397, (2017).

  • Connor, C. E., Egeth, H. E. & Yantis, S. Visual attention: bottom-up versus top-down. Curr. Biol. 14, R850–R852 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, W. X. Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory. Philos. Trans. R. Soc. B: Biol. Sci. 368, 20130060 (2013).


    Google Scholar
     

  • Wang, T. Y. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y. et al. Scalability of all-optical neural networks based on spatial light modulators. Phys. Rev. Appl. 15, 054034 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Yan, T. et al. All-optical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8, eabn7630 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunner, D. et al. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • LeCun, Y. et al. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


    Google Scholar
     

  • Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. N. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine. 29, 141–142 (2012).

  • Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. Print at https://arxiv.org/abs/1708.07747 (2017).

  • Wang, M. & Deng, W. H. Oracle-MNIST: a realistic image dataset for benchmarking machine learning algorithms. Print at https://arxiv.org/abs/2205.09442 (2022).

  • Noever, D. & Noever, S. E. M. Overhead mnist: A benchmark satellite dataset. Print at https://arxiv.org/abs/2102.04266 (2021).

  • Clanuwat, T. et al. Deep learning for classical japanese literature. Print at https://arxiv.org/abs/1812.01718 (2018).

  • Fisher, R. A. Iris. UCI Machine Learning Repository. (1988). at https://doi.org/10.24432/C56C76 URL.

  • Aeberhard, S. & Forina, M. Wine. UCI Machine Learning Repository. (1991). at https://doi.org/10.24432/C5PC7J URL.

  • Liu, W. Y. et al. Large-margin softmax loss for convolutional neural networks. Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY, USA: JMLR.org, (2016).

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations (ICLR). San Diego, CA, USA: ICLR, (2014).

  • Kudo, M. et al. Vowel. UCI Machine Learning Repository. (2017). at https://doi.org/10.24432/C5NS47 URL.

  • Warden, P. Speech commands: A dataset for limited-vocabulary speech recognition. Print at https://arxiv.org/abs/1804.03209 (2018).

  • Becker, S. et al. Interpreting and explaining deep neural networks for classification of audio signals. Print at https://arxiv.org/abs/1807.03418v1 (2018).

  • Salamon, J., Jacoby, C. & Bello, J. P. A dataset and taxonomy for urban sound research. Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, FL, USA: ACM, 1041-1044, (2014).

  • Han, W. et al. An efficient MFCC extraction method in speech recognition. 2006 IEEE International Symposium on Circuits and Systems. Kos, Greece: IEEE, (2006).

  • Yang, J. C. et al. MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data 10, 41 (2023).



  • The article was first published here

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    You May Also Like

    iPhone

    10:29 a.m. ET, February 22, 2024 AT&T recently applied for a waiver to allow it to stop servicing traditional landlines in California From CNN’s...

    Entertainmment

    Everyone in Kyle Hausmann-Stokes’ compassionate feature My Dead Friend Zoe has suffered a loss. Merit (Sonequa Martin-Green), a nervous Afghanistan war veteran, is reeling...

    Gaming

    Video: Bandai Namco Reveals New Gameplay Footage Of Dragon Ball Z: Kakarot DLC 6  Nintendo Life Dragon Ball Z: Kakarot DLC Trailer Previews Goku’s Next...

    Computing

    Using 3D storage techniques, scientists at the University of Shanghai for Science and Technology developed an optical disk capable of accommodating 1.6 petabits of...